خلاصه کتاب یادگیری عمیق اثر ایان گودفلو

بفرست برای دوستت
Telegram
WhatsApp
کتاب یادگیری عمیق اثر گودفلو

فهرست مطالب

در این خلاصه کتاب یادگیری عمیق اثر گودفلو قرار است با یک کتاب تخصصی دیپ لرنینگ آشنا شوید که در سال 2016 منتشر شده است. ایلان ماسک در مورد این کتاب می گوید که این کتاب توسط سه متخصص در این زمینه تألیف شده و تنها کتاب جامع در ارتباط با این موضوع است.

یادگیری عمیق نوعی یادگیری ماشین است که شامل آموزش شبکه‌ های عصبی مصنوعی برای یادگیری از داده‌ها می‌شود. این شبکه‌های عصبی بر اساس ساختار مغز انسان الگوگیری می‌شوند و می‌توانند الگوها را تشخیص داده، داده‌ها را دسته‌بندی کرده و عمل تخمین و پیشبینی را انجام دهند.

به دلیل توانایی این روش در حل مسائل پیچیده که پیش‌تر با استفاده از تکنیک‌های معمول یادگیری ماشینی غیرممکن بود، یادگیری عمیق مورد توجه قرار گرفته است.

 

کتاب یادگیری عمیق گودفلو

 

ویژگی

توضیحات

عنوان

یادگیری عمیق (Deep Learning)

نویسنده

یان گودفلو، یوشوا بنجیو، آرون کورویل

تاریخ انتشار

2016

ناشر

The MIT Press

تعداد صفحات

802 صفحه (نسخه PDF)

موضوعات

شبکه‌های عصبی، روش‌های رگولاریزه، تکنیک‌های بهینه‌سازی، شبکه‌های عصبی کانولوشن، شبکه‌های عصبی بازگشتی، مدل‌های تولیدی، کاربردهای یادگیری عمیق

 

 

بهترین کتاب دیپ لرنینگ |کتاب یادگیری عمیق

راهنمای مطالعه کتاب یادگیری عمیق گودفلو 

این کتاب دیپ لرنینگ اثر گودفلو برای پژوهشگران یادگیری ماشین و مهندسین نرم‌افزار طراحی شده است. با وجود انتشار آن در سال 2016، هنوز هم بهترین کتاب در این حوزه است.

✅ بخش اول (فصل‌های 1 تا 5) ابزارهای ریاضی اساسی و مفاهیم یادگیری ماشینی را معرفی می‌کند. خلاصه پیش‌رو، به این بخش می‌پردازد.

✅ بخش دوم (فصل‌های 6 تا 9) به تشریح الگوریتم‌های یادگیری عمیق پرکاربرد می‌پردازد که در واقع فناوری‌های حل شده هستند. خلاصه بعدی به این بخش خواهد پرداخت.

✅ بخش سوم (فصل‌های 10 تا 20) ایده‌های بیشتری که به طور گسترده‌ای به عنوان موارد مهمی برای تحقیقات آینده در زمینه یادگیری عمیق در نظر گرفته می‌شوند، را توصیف می‌کند. (از این فصل‌ها عبور کنید.)

 

سرفصل های کتاب یادگیری عمیق 

مقدمه

بخش اول: ریاضیات کاربردی و مبانی یادگیری ماشین

   – ۲ جبر خطی

   – ۳ احتمال و نظریه اطلاعات

   – ۴ محاسبات عددی

   – ۵ مبانی یادگیری ماشین

بخش دوم: شبکه‌های عمیق مدرن در کاربردهای عملی

   – ۶ شبکه‌های عمیق پیش‌رونده

   – ۷ تنظیمات یادگیری عمیق

   – ۸ بهینه‌سازی در آموزش مدل‌های عمیق

   – ۹ شبکه‌های پیچشی

   – ۱۰ مدل‌سازی دنباله ای: شبکه‌های تکرارشونده و بازگشتی

   – ۱۱ متدولوژی عملی

   – ۱۲ کاربردها

بخش سوم: تحقیقات در زمینه یادگیری عمیق

   – ۱۳ مدل‌های فاکتور خطی

   – ۱۴ اتوانکودرها

   – ۱۵ یادگیری نمایندگی (یادگیری ویژگی)

   – ۱۶ مدل‌های احتمالی ساختاری برای یادگیری عمیق

   – ۱۷ روش‌های مونت کارلو

   – ۱۸ مواجهه با تابع پارتیشن

   – ۱۹ استنتاج تقریبی

   – ۲۰ مدل‌های تولیدکننده عمیق

کتاب Deep Learning

خلاصه کتاب یادگیری عمیق (deep learning)

فصل اول مقدمه

این کتاب به حل مسائل مفهومی‌تر در این حوزه‌ها پرداخته است. این راه‌حل‌ها به کامپیوترها امکان می‌دهند که از تجربه، یاد بگیرند و دنیا را با توجه به سلسله مراتبی از مفاهیم درک کنند، به طوری که هر مفهوم بر اساس ارتباط خود با مفاهیم ساده‌تر تعریف می‌شود.

از طریق گردآوری دانش از تجربه، این رویکرد، نیاز به تعیین کردن دانش مورد نیاز کامپیوتر از سوی انسان را از بین می‌برد. سلسله مراتب مفاهیم به کامپیوتر اجازه می‌دهد که مفاهیم پیچیده‌تر را با ساختن آنها از مفاهیم ساده‌تر فرا بگیرد.

اگر نویسندگان یک گراف نموداری برای نشان دادن چگونگی ساخت این مفاهیم از یکدیگر ایجاد کنند، این گراف عمق داشته و با لایه‌های متعددی نشان داده می‌شود. به همین دلیل، نویسندگان این رویکرد را “یادگیری عمیق هوش مصنوعی” نامیده‌اند.

 

فصل دوم جبرخطی

جبر خطی یک شاخه از ریاضیات است که به طور گسترده در علوم و مهندسی استفاده می‌شود. با این‌حال، به دلیل آنکه جبر خطی یک نوع از ریاضیات پیوسته به‌جای ریاضیات گسسته است، بسیاری از دانشمندان کامپیوتر تجربه کمتری در این زمینه دارند. این فصل به‌طور کامل بسیاری از موضوعات مهم جبر خطی را که برای درک یادگیری عمیق ضروری نیستند، حذف خواهد کرد.

 

فصل سوم – احتمال و نظریه اطلاعات

این فصل به شرح احتمال و نظریه اطلاعات می‌پردازد. نظریه احتمال یک چارچوب ریاضی برای نمایش اظهارات نامعین است. این ابزار امکان اندازه‌گیری نامعینی‌ها را فراهم می‌کند و اصولی برای استنتاج اظهارات جدید نیز دارد.

همچنین، در بسیاری از حوزه‌های علمی و مهندسی، نظریه احتمال ابزار اساسی است. نویسندگان با ذکر این فصل، قصد دارند تا اطمینان حاصل کنند که خوانندگانی که صرفا در حوزه مهندسی نرم‌افزار فعالیت بوده و با نظریه احتمال آشنایی کمی دارند، قادر به درک محتوای این کتاب باشند.

 

فصل چهارم محاسبات عددی

این فصل به طور کلی به بررسی مختصری از بهینه‌سازی عددی می‌پردازد. در واقع، الگوریتم‌های یادگیری ماشین اغلب نیازمند محاسبات عددی گسترده‌ای هستند.

به طور کلی، این بخش به الگوریتم‌هایی اشاره می‌کند که با استفاده از روش‌هایی مانند فرآیندهای تکراری بهبود، به جای اینکه به شکل تحلیلی از مسئله اقدام به تولید فرمول و ارائه یک عبارت نمادین برای حل دقیق کنند، تخمین‌های حل مسئله را از طریق یک فرآیند تکراری به‌روز می‌کنند.

 

  هوش مصنوعی (AI) چیست؟ معرفی AI و کاربردهای آن به زبان ساده

فصل پنجم – مبانی یادگیری ماشین

این فصل مفاهیم اساسی تعمیم، کم‌برازش، بیش‌برازش، انحراف، واریانس و تنظیم را معرفی می‌کند. یادگیری عمیق یک نوع خاص از یادگیری ماشین است. برای درک یادگیری عمیق، باید اصول اساسی یادگیری ماشین را به‌خوبی درک کرده باشیم.

این فصل یک دوره مختصر از اصول کلی مهم را ارائه می‌دهد که در مابقی کتاب به کار گرفته خواهند شد. به خوانندگان مبتدی یا کسانی که می‌خواهند دیدگاه گسترده‌تری کسب کنند، توصیه می‌شود به کتاب‌های یادگیری ماشین که اصول اساسی را بطور جامع‌تری بررسی کرده‌اند، مانند کتاب‌های مورفی یا بیشاپ مراجعه کنند.

 

فصل ششم شبکه عمیق پیش‌رونده یا پیش‌رو

شبکه‌های پیش‌رو عمیق، که اغلب به عنوان شبکه‌های عصبی یا پرسپترون‌های چندلایه (MLPs) نیز شناخته می‌شوند، مدل‌های بارزی در یادگیری عمیق هستند.

این شبکه‌ها برای فراگیران یادگیری ماشین بسیار اهمیت دارند و پایه‌ای برای بسیاری از کاربردهای تجاری مهم به‌شمار می‌آیند. به عنوان مثال، شبکه‌های پیچشی (کانولوشنی) که برای تشخیص اشیاء در تصاویر به‌کار می‌روند، نوعی شبکه پیش‌رو ویژه هستند. شبکه‌های پیش‌رو، کلید اصلی ورود به شبکه‌های بازگشتی هستند که برای بسیاری از کاربردهای زبان طبیعی کاربرد دارند.

 

فصل هفتم تنظیمات یادگیری عمیق

در این فصل، نویسندگان به تفصیل به توضیح تنظیم در مدل‌های عمیق یا مدل‌هایی که ممکن است به عنوان اجزای سازنده برای تشکیل مدل‌های عمیق استفاده شوند، می‌پردازند.

برخی از بخش‌های این فصل مربوط به مفاهیم استاندارد در یادگیری ماشین می باشد. اگر خوانندگان با این مفاهیم آشنایی دارند، ممکن است بخواهند از این بخش‌ها عبور کنند. با این حال، بیشتر محتوای این فصل به گسترش مفاهیم اساسی که خاص شبکه‌های عصبی است، اختصاص دارد.

 

فصل هشتم بهینه‌سازی و آموزش مدل‌های عمیق

این فصل بر روی یک مورد خاص از بهینه‌سازی تمرکز دارد: پیدا کردن پارامترهای θ یک شبکه عصبی که به طور قابل توجهی تابع هزینه J(θ) را کاهش دهند. این تابع هزینه به طور معمول شامل یک معیار عملکرد که بر روی کل مجموعه آموزش ارزیابی می‌شود، و همچنین شامل عوامل تنظیم (منظور از عوامل تنظیم، پارامتر های L1 و L2 در بحث ریگولاریزیشن است) می‌باشد.

 

فصل نهم شبکه‌های کانولوشنی یا پیچشی

شبکه‌های پیچشی [3]، که به عنوان شبکه‌های عصبی یا CNN ها نیز شناخته می‌شوند، نوع ویژه‌ای از شبکه‌های عصبی برای پردازش داده‌هایی با توپولوژی گرید شکل (گرید بندی شده) را فراهم می‌کنند.

در این فصل، نویسندگان در ابتدا به توضیح می‌پردازند که پیچش چیست. سپس، هدف استفاده از پیچش در یک شبکه عصبی را شرح می‌دهند و پس از آن عملی به نام ادغام را که تقریباً تمام شبکه‌های پیچشی از آن استفاده می‌کنند، توضیح می‌دهند.

 

فصل دهم مدل‌سازی دنباله‌ای: شبکه های تکرار شونده و بازگشتی

شبکه‌های عصبی بازگشتی یا RNN ها، یک خانواده از شبکه‌های عصبی برای پردازش داده‌های توالی می‌باشند.

در این فصل، ایده و تئوری یک گراف محاسباتی را به‌طوری که توالی‌ها نیز در آن وجود داشته باشند، بیان می‌شود. این توالی‌ها نمایانگر تأثیر مقدار حال حاضر یک متغیر بر مقدار خود در مرحله زمانی آینده هستند. این گراف‌های محاسباتی امکان تعریف شبکه‌های عصبی بازگشتی را فراهم می‌کنند. همچنین در این فصل، نویسندگان تعدادی روش مختلف برای ساخت، آموزش و استفاده از شبکه‌های عصبی بازگشتی را توصیف می‌کنند.

 

فصل یازدهم متودولوژی عملی

به‌کارگیری موفقیت‌آمیز تکنیک‌های یادگیری عمیق نیازمند فهمی فراتر از چیستی الگوریتم‌هاست و همچنین باید اصولی که این تکنیک‌ها با آن‌ کار می‌کنند را نیز به خوبی درک کرد.

اعمال درست یک الگوریتم به تسلط بر یک روش‌شناسی نسبتاً ساده وابسته است. بسیاری از توصیه‌های این فصل از مطالب Ng (احتمالا منظور از Ng، آقای Andrew Ng است) اقتباس شده‌اند.

 

فصل دوازدهم کاربردها

در این فصل، نویسندگان چگونگی استفاده از یادگیری عمیق در حوزه‌هایی مانند بینایی ماشین، تشخیص گفتار، پردازش زبان طبیعی و سایر حوزه‌ها را در ابعاد تجاری توضیح می دهند. نویسندگان گفته‌های خود را با بحث در مورد پیاده‌سازی‌های بزرگ‌مقیاس شبکه‌های عصبی که برای اکثر کاربردهای هوش مصنوعی ضروری هستند، آغاز می‌کنند.

 

فصل سیزدهم مدل های فاکتور خطی

در این فصل، نویسندگان برخی از ساده‌ترین مدل‌های احتمالی با متغیرهای نهان، یا به عبارت دیگر مدل‌های فاکتورخطی، را شرح می‌دهند. این مدل‌ها گاهی به عنوان اجزای سازنده‌ای از مدل‌های مخلوط یا مدل‌های احتمالی عمیق و بزرگتر به کار می‌روند. علاوه بر این، نویسندگان بسیاری از رویکردهای اساسی که برای ساخت مدل‌های تولیدکننده، یا به عبارت دیگر مدل‌های عمیق پیشرفته، ضروری هستند را بیان می کنند.

 

  چرا پایتون برای تحلیل داده و علم داده ضرورت دارد؟

فصل چهاردهم اتوانکدرها

خودکدگذار (اتوانکدر) یک شبکه عصبی است که تلاش می کند تا ورودی خود را به خروجی‌اش منتقل کند. درون این شبکه دارای لایه مخفی “h” است که کدی را برای نمایش ورودی توصیف می‌کند.

 

فصل پانزدهم یادگیری نمایندگی یا یادگیری ویژگی

در این فصل در ابتدا به بحث در مورد مفهوم یادگیری نمایندگی و چگونگی استفاده از مفهوم نمایندگی برای طراحی ساختارهای عمیق پرداخته می‌شود. در مرحله دوم، به بحث در مورد چگونگی استفاده از الگوریتم‌های یادگیری قدرت آماری در اعمال مختلف پرداخته می شود، از جمله استفاده از اطلاعات موجود در اعمال بدون نظارت، برای انجام اعمال با نظارت.

 

فصل شانزدهم – مدل‌های احتمالاتی ساختاری برای یادگیری عمیق

در یادگیری عمیق از انواع مختلف مدل‌سازی استفاده می‌شود که محققان می‌توانند از آنها برای هدایت طراحی ها و شرح الگوریتم‌های خود استفاده کنند. یکی از این اصول، ایده مدل‌های احتمالاتی ساختاری است.

 

فصل هفدهم روش های مونت کارلو

الگوریتم‌های تصادفی به دو دسته اصلی تقسیم می‌شوند: الگوریتم‌های لاس وگاس و الگوریتم‌های مونت کارلو. الگوریتم‌های لاس وگاس همیشه پاسخ صحیح را (یا اعلام خطای آنها را) باز می‌گردانند. این الگوریتم‌ها یک مقدار تصادفی از منابعی مانند حافظه یا زمان را مصرف می‌کنند. در نقطه مقابل، الگوریتم‌های مونت کارلو پاسخ‌ها را با یک مقدار تصادفی از خطا باز می‌گردانند.

 

فصل هجدهم مواجهه با تابع تقسیم

در این فصل، نویسندگان تکنیک‌های استفاده شده برای آموزش و ارزیابی مدل‌هایی که توابع تقسیم غیرقابل حل دارند را توصیف می‌کنند.

 

فصل نوزدهم استنتاج تقریبی

در این فصل، تعدادی از تکنیک‌های مورد استفاده برای مقابله با مسائل استنتاج غیرقابل حل معرفی می‌شود.

 

فصل بیستم مدل‌های تولیدکننده عمیق

در این فصل، توضیح داده شده است که چگونه از این تکنیک‌ها برای آموزش مدل‌های احتمالی استفاده می‌شود که در صورت استفاده معمولی از آن‌ها، محاسبات آن‌ها دشوار خواهد بود. به عبارت دیگر، چگونه مدل‌های اعتقاد عمیق و ماشین‌های بولتزمن عمیق و دیگر مدل‌های پیچیده را با استفاده از این تکنیک‌ها آموزش دهیم.

یادگیری عمیق نویسنده ایان گودفلو

نکات مهم کتاب

کتاب یادگیری عمیق نوشته ایان گودفلو، یوشوا بنجیو و آرون کورویل، جزو بهترین کتاب‌ها در حوزه یادگیری عمیق می‌باشد. این کتاب برای پژوهشگران یادگیری ماشین و مهندسین نرم‌افزار بسیار مناسب بوده و همه مسائل مرتبط با این حوزه از جمله شبکه‌های عصبی، روش‌های منظم‌سازی، تکنیک‌های بهینه‌سازی، شبکه‌های عصبی کانولوشنی، شبکه‌های عصبی بازگشتی، مدل‌های تولیدی و کاربردهای وسیع یادگیری عمیق را شرح می‌دهد. این کتاب به خواننده کمک می‌کند تا اصول اساسی یادگیری عمیق که زیر مجموعه‌ای از هوش مصنوعی است را درک کرده و نحوه کاربرد آن در حل مسائل واقعی را بیاموزد. کتاب “یادگیری عمیق” توسط دکتر ایوب ترکیان به فارسی ترجمه شده و شامل 11 فصل است.

در واقع این کتاب یک منبع جامع در زمینه یادگیری عمیق است که از مبانی ریاضی و مفاهیم یادگیری ماشین شروع شده و به الگوریتم‌های یادگیری عمیق پرکاربرد و ایده‌های نوین در این حوزه می‌پردازد. نویسندگان این کتاب از پیشگامان یادگیری عمیق محسوب می‌شوند؛ به عنوان مثال، یوشوا بنجیو یکی از سه پدرخوانده یادگیری عمیق و یان گودفلو خالق شبکه‌های متخاصم مولد (GANs) است. در این کتاب به طور مختصر با مهم ترین کاربرد های پایتون نیز آشنا خواهید شد.

این کتاب به دلیل پوشش جامع مفاهیم و تکنیک‌های اصلی یادگیری عمیق، به عنوان یکی از بهترین منابع موجود در این حوزه شناخته می‌شود. “یادگیری عمیق” شامل بخش‌هایی در مورد مفاهیم ریاضی کاربردی مانند جبر خطی، نظریه احتمال و اطلاعات، و محاسبات عددی است که به درک اصول ریاضیاتی مرتبط با هوش مصنوعی کمک می‌کند. ایلان ماسک این کتاب را “تنها کتاب جامع در این زمینه” توصیف کرده است و به طور گسترده‌ای به عنوان یک مرجع برای درک عمیق‌تر الگوها و اطلاعات پیچیده در داده‌ها با استفاده از مدل‌های عصبی پیچیده مورد استفاده قرار می‌گیرد. برای کسب اطلاعات بیشتر در مورد مباحث یادگیری عمیق می‌توانید یادگیری عمیق با پایتون را نیز مطالعه کنید. توجه داشته باشید که در دیتایاد شما می‌توانید مباحثی مانند آموزش رایگان شبکه عصبی، آموزش رایگان یادگیری ماشین با پایتون و آموزش رایگان پایتون را نیز به طور رایگان یاد بگیرید.

  • به طور خلاصه نکات مهم کتاب عبارتند از:
  • جامعیت: کتاب “یادگیری عمیق” به تمام جنبه‌های مرتبط با این حوزه، از جمله شبکه‌های عصبی، روش‌های منظم‌سازی، تکنیک‌های بهینه‌سازی، شبکه‌های عصبی کانولوشنی، شبکه‌های عصبی بازگشتی، مدل‌های تولیدی و کاربردهای وسیع یادگیری عمیق می‌پردازد.
  • مفاهیم پایه‌ای: کتاب همراه با مفاهیم ریاضی کاربردی مانند جبر خطی، نظریه احتمال و اطلاعات و محاسبات عددی، به درک اصول ریاضیاتی مرتبط با هوش مصنوعی کمک می‌کند.
  • ساختار: این کتاب شامل سه بخش اصلی است: ابزارهای ریاضی و مفاهیم یادگیری ماشین، الگوریتم‌های یادگیری عمیق پرکاربرد، و ایده‌هایی برای تحقیقات آینده در زمینه یادگیری عمیق.
  • مخاطب: این کتاب برای پژوهشگران یادگیری ماشین و مهندسان نرم‌افزار مناسب است و به خواننده کمک می‌کند تا اصول اساسی یادگیری عمیق را درک کرده و نحوه استفاده از آن در حل مسائل واقعی را بیاموزد.
  10 تا از برترین الگوریتم های یادگیری ماشین برای مبتدیان

خرید و قیمت کتاب یادگیری عمیق

نتیجه‌گیری

کتاب “یادگیری عمیق” نوشته ایان گودفلو، یوشوا بنژیو و آرون کورویل، یک راهنمای جامع در زمینه یادگیری عمیق است. این کتاب به تمام جنبه‌های مرتبط با این حوزه، از جمله شبکه‌های عصبی، روش‌های رگولاریزه، تکنیک‌های بهینه‌سازی، شبکه‌های عصبی کانولوشنی، شبکه‌های عصبی بازگشتی، مدل‌های تولیدی و کاربردهای وسیع یادگیری عمیق، می‌پردازد. اگر شما یک دانشمند داده هستید پس باید این کتاب را بخوانید چراکه به شما کمک می‌کند تا اصول اساسی یادگیری عمیق را درک کنید و نحوه کاربرد آن در حل مسائل واقعی را به خوبی یاد بگیرید.

 

سخن پایانی: 

در حوزه یادگیری عمیق، تلاش‌ها برای شناخت الگوها و اطلاعات پیچیده در داده‌ها به کمک مدل‌های عصبی با اندازه و پیچیدگی بالا انجام می‌شود. یکی از منابع کلیدی برای درک عمیق‌تر این حوزه، کتاب “یادگیری عمیق” است که توسط سه نفر، یعنی ایان گودفلو، آرون کورویل و یوشوا بنجیو نوشته شده است.

این کتاب با ترکیب مفاهیم پایه و نظریه‌های پیشرفته در زمینه یادگیری عمیق، به خواننده امکان می‌دهد تا از ابتدایی‌ترین مباحث این حوزه گرفته تا جزئیات پیچیده‌تر آن آشنا شود. ایان گودفلو به عنوان یکی از پژوهشگران برجسته در زمینه یادگیری عمیق، همراه با همکاران خود در این کتاب به بررسی اصول، الگوریتم‌ها، و کاربردهای وسیع یادگیری عمیق می‌پردازند.

این اثر نه تنها به عنوان یک منبع آموزشی معتبر برای دانشجویان و پژوهشگران، بلکه به عنوان یک راهنمای عملی برای مهندسان و علاقه‌مندان به این حوزه نیز شناخته می‌شود. به دلیل توانایی نویسندگان در ارائه مطالب با سطح دشواری متناسب با تجربه خواننده، این کتاب به عنوان یکی از منابع پرطرفدار در حوزه یادگیری عمیق به شمار می‌آید.

علاوه بر توضیحات تئوری، این کتاب به صورت جامع به مفاهیم عملی و کاربردهای واقعی یادگیری عمیق پرداخته است.

نکاتی که در کتاب آمده است، از تحلیل داده‌های پیچیده تا پیاده‌سازی مدل‌های عصبی در پروژه‌های واقعی را شامل می‌شود. این کتاب به عنوان یک راهنمای جامع و ارزشمند، به توسعه دانش و مهارت‌های مرتبط با یادگیری عمیق علاقه‌مندان کمک بسزایی می‌کند و یک پله مهم برای فهم بهتر و اعمال عملی‌تر این حوزه فراهم می‌آورد.

خرید کتاب یادگیری عمیق اثر ایان گودفلو با ترجمه

منبع: deeplearningbook.org

سوالات متداول

۱. بهترین کتاب‌های یادگیری عمیق برای مبتدیان کدامند؟

“یادگیری عمیق” اثر گودفلو یک منبع جامع برای یادگیری عمیق از پایه، پوشش‌دهنده مباحث از هوش مصنوعی و ریاضیات مورد نیاز تا سطوح بالاتر است. ایلان ماسک این کتاب را “تنها کتاب جامع در این زمینه” معرفی می‌کند. همچنین”یادگیری عمیق با پایتون” اثر فرانسوا شوله کتابی است که مفاهیم پیچیده را به شیوه‌ای شهودی توضیح می‌دهد و پر از مثال‌های عملی با توضیحات دقیق کدها است. این کتاب برای کسانی که دانش خوبی از پایتون و یادگیری ماشین دارند بسیار مناسب می‌باشد.

۲. آیا برای مطالعه کتاب‌های یادگیری عمیق نیاز به پیش‌زمینه برنامه‌نویسی دارم؟

داشتن پیش‌زمینه برنامه‌نویسی برای مطالعه کتاب‌های یادگیری عمیق بسیار لازم است. همچنین آشنایی با زبان‌های برنامه‌نویسی مانند پایتون که کتابخانه‌های قدرتمندی مانند TensorFlow و Keras دارد، به شما کمک می‌کند تا مفاهیم را بهتر درک کرده و آن‌ها را به صورت عملی پیاده‌سازی کنید. بدون دانش برنامه‌نویسی، درک و استفاده از الگوریتم‌ها و مدل‌های یادگیری عمیق دشوار خواهد بود.

۳. کدام کتاب یادگیری عمیق مثال‌های عملی و کدنویسی دارد؟

کتاب “یادگیری عمیق با پایتون” اثر فرانسوا شوله، پر از مثال‌های عملی با توضیحات خط به خط کدها است و مفاهیم پیچیده را به شیوه‌ای شهودی توضیح می‌دهد. “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” نوشته اورلین ژرون نیز مثال‌های عملی و تکه‌های کد را ارائه می‌کند که به خوانندگان کمک می‌کند مفاهیم را در مسائل دنیای واقعی به کار ببرند. همچنین، کتاب “آموزش عملی یادگیری عمیق” نیز برای یادگیری عملی این حوزه مناسب است. کتاب “هوش مصنوعی با پایتون” اثر پراتیک جوشی هم مثال‌های کاربردی و کدنویسی دارد که به خوانندگان اجازه می‌دهد مفاهیم را در مسائل دنیای واقعی به کار ببرند.

۴. چه تفاوتی بین کتاب‌های یادگیری عمیق مبتنی بر TensorFlow و PyTorch وجود دارد؟

کتاب‌های یادگیری عمیق مبتنی بر TensorFlow بیشتر بر مقیاس‌پذیری و کاربردهای صنعتی تمرکز دارند و اکوسیستم قوی‌تری ارائه می‌دهند. در مقابل کتاب‌های مبتنی بر PyTorch برای محققان مناسب‌تر هستند، زیرا این فریم‌ورک امکان آزمایش با ساختارهای مختلف مدل را ساده‌تر کرده و دستورالعمل‌های پایتونیک آن، یادگیری را آسان‌تر می‌کند. همچنین PyTorch امکان دیباگینگ ساده‌تری را فراهم می‌آورد. انتخاب بین این دو بستگی به نیازها و اهداف کاربر دارد؛ پروژه‌های کوچک با PyTorch و پروژه‌های بزرگ و پیچیده با TensorFlow مناسب‌تر هستند.

لینک دانلود کتاب

یادگیری عمیق گودفلو

آموزش پیشنهادی و مکمل

این مطالب را هم مشاهده کنید

اشتراک در
اطلاع از
guest
2 نظرات
قدیمی‌ترین
تازه‌ترین بیشترین رأی
بازخورد (Feedback) های اینلاین
مشاهده همه دیدگاه ها
نعیم
نعیم
1 سال قبل

کتاب یادگیری عمیق رو من خوندم، توصیه می کنم حتما بخونین

سید محمد باقرپور
سید محمد باقرپور
مدیر
پاسخ به  نعیم
1 سال قبل

ممنونم ازت دوست خوبم

سبد خرید

تا 50% تخفیف دوره ها (مدت محدود)

برای دیدن نوشته هایی که دنبال آن هستید تایپ کنید.
×